Unit 4
Data Representation in Computers

1. If the binary number 1000 0101 0011 represents an unsigned binary integer, its value in denary is:
-7 11/16
2131
853
4123

2. If the binary number 1000 0101 0011 represents a binary coded decimal integer, its value in denary is:
-7 11/16
2131
853
4123

3. If the binary number 1000 0101 0011 represents a two's complement floating point number with an eight bit mantissa followed by a four bit exponent, its value in denary is:
-7 11/16
2131
853
4123

4. Express the denary number 35 in hexadecimal:
1D
43
35
23

5. Express the hexadecimal number FF in denary:
255
377
15
7373

6. When a number is too near zero for the exponent to be expressed it is an example of:
overflow
a positive exponent
underflow
a normalised number

7. The positive binary number 1010 1111 translated into hexadecimal is:
AE
AF
BE
BF

8. The number 5.75 translated into a normalised floating point number, with a 10-bit mantissa and 6-bit exponent is:
0101110000 000011
0110110000 000011
0101110000 000001
0000010111 000100

9. The number -19 translated into an 8-bit two's complement binary integer is:
1001 0011
1110 1101
0001 0011
1110 1100

10. Express the denary number 27 in binary coded decimal:
0010 0111
0111 0010
0001 1011
1011 0001

Score =